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SUMMARY
Glioblastoma (GBM) is the most aggressive form of glioma, with poor prognosis exhibited by most patients,
and a median survival time of less than 2 years. We assemble a cohort of 87 GBM patients whose survival
ranges from less than 3months and up to 10 years and perform both high-resolutionmass spectrometry pro-
teomics andRNA sequencing (RNA-seq). Integrative analysis of protein expression, RNA expression, and pa-
tient clinical information enables us to identify specific immune, metabolic, and developmental processes
associated with survival as well as determine whether they are shared between expression layers or are layer
specific. Our analyses reveal a stronger association between proteomic profiles and survival and identify
unique protein-based classification, distinct from the established RNA-based classification. By integrating
published single-cell RNA-seq data, we find a connection between subpopulations of GBM tumors and sur-
vival. Overall, our findings establish proteomic heterogeneity in GBM as a gateway to understanding poor
survival.
INTRODUCTION

Glioblastoma (GBM) is the most common high-grade adult brain

tumor. Despite aggressive treatment combining radio- and

chemotherapy, as well as gross total resection of the tumor, dis-

ease usually progresses and the median survival time of patients

is less than 2 years (Ostrom et al., 2015; Patel et al., 2019; Strobel

et al., 2019; Stupp et al., 2017). A major challenge in GBM ther-

apy is the tumor heterogeneity, which has been characterized on

the genomic and transcriptomic levels.

Several studies conducted by The Cancer Genome Atlas

(TCGA) described the genomic landscape of GBM tumors,

defined by tumors invariably bearing epidermal growth factor re-

ceptor (EGFR) amplification and TP53 and NF1 mutations, in

addition to other genetic aberrations (Cancer Genome Atlas

Research Network, 2008). GBM classification based on gene

expression signatures has established transcriptional heteroge-

neity (Nutt et al., 2003; Phillips et al., 2006). These analyses iden-

tifiedmolecular subtypes associated with prognosis, which were

later refined based on RNA sequencing (RNA-seq) (Verhaak

et al., 2010) and more uniform sample selection (Wang et al.,

2017) to yield three subtypes termed proneural (PN), mesen-

chymal (MES), and classical (Cla). More recent studies, however,

found little-to-no association between subtypes and prognosis

(Wang et al., 2017). This is in part due to elimination of mutant

(IDH1-mut) tumors from the analyzed cohorts, as they are known
This is an open access article under the CC BY-N
to be less aggressive and were previously defined as part of the

PN subgroup (Wang et al., 2017).

Beyond bulk tumor analysis, single-cell RNA-seq (scRNA-seq)

studies have shown that several transcriptional signatures exist

within single tumors, representing different biological processes

such as hypoxia and cell cycle (Patel et al., 2014). Furthermore,

Neftel et al. (2019) recently showed that transcriptional heteroge-

neity of GBM tumors converges to four signatures that resemble

MES and normal brain lineage stages and represent four tumor

cell subpopulations (Neftel et al., 2019).

Omics-based studies have largely contributed to elucidation

of these sources of heterogeneity. However, we hypothesized

that tumor heterogeneity at the proteomic level should also be

comprehensively evaluated, given that mass spectrometry

(MS)-based proteomics has become an integral part of cancer

research, shedding light on the functional profile of the cancer

cell (Coscia et al., 2018; Harel et al., 2019; Mertins et al., 2016;

Pozniak et al., 2016; Tyanova et al., 2016a; Vasaikar et al.,

2019; Yanovich et al., 2018; Zhang et al., 2016). In GBM, early

proteomic studies have mostly utilized matrix-assisted laser

desorption/ionization time-of-flight (MALDI-TOF) technology

and applied it to find secreted tumor biomarkers from either

cell lines or patient samples (Gautam et al., 2012; Kumar et al.,

2010; Thirant et al., 2012). Other studies applied the technology

to study the tumor cell proteome of GBM xenograft rat models

(Rajcevic et al., 2009) or of cell lines undergoing different
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treatments (Puchades et al., 2007). More recent proteomic ana-

lyses of gliomas applied higher resolution MS techniques to

study clinical samples of grade II–IV gliomas (Buser et al.,

2019) and to identify proteomic differences between gliomas of

various grades and genomic alterations (Djuric et al., 2019).

However, GBM represents a small fraction of the tumors

analyzed in these studies.

Integration ofmultiple omics-basedmethods further advances

the comprehensive view of cancer. Specifically, proteogenomics

combines MS-based proteomic data with whole-exome and/or

whole-transcriptome sequencing in order to identify the func-

tional outcome of genetic alterations and to evaluate the differ-

ences between expression layers. Recently published studies

by the Clinical Proteomic Tumor Analysis Consortium (CPTAC)

and others include proteogenomic analyses of ovarian, breast,

colon, hepatocellular, lung, and gastric cancer (Chen et al.,

2020; Gao et al., 2019; Gillette et al., 2020; Mertins et al., 2016;

Mun et al., 2019; Zhang et al., 2014, 2016). Among other findings,

these studies report the correlation between mRNA and protein

levels of the same tumor tissues and show a median correlation

that is usually modest, ranging from 0.28 in gastric cancer to 0.54

in hepatocellular carcinoma. This further supports the potential

benefit that can be provided by the proteomic layer.

In the current work, we present a proteogenomic dataset of

GBM clinical samples. We have assembled a cohort of 87

GBM patients of varying survival rates and performedMS-based

proteomics as well as RNA-seq in order to identify the molecular

differences associated with survival and examine the contribu-

tion of each layer to GBM landscape. We show that the protein

layer is more significantly associated with patient survival, but

in addition, RNA-protein integration identifies clear patterns of

layer-specific and layer-common processes specifically contrib-

uting to either short-term or long-term survival periods of pa-

tients. We validated our results analytically using published

RNA-seq datasets and experimentally using real-time PCR and

immunohistochemistry (IHC). Furthermore, we compared our

data with published scRNA-seq of GBM tumors and found a

link between tumor subpopulations and survival. Altogether,

these results highlight the potential of proteogenomics to further

stratify heterogeneity in GBM tumors and identify processes

contributing to poorer survival.

RESULTS

Unsupervised clustering of samples differs between the
proteomic and transcriptomic levels
We collected tumor specimens from 87 patients that were all

pathologically defined as GBM, for which we generated either

MS-based proteomics data, RNA-seq data, or both (Figure 1A).

We performed the analysis with 84 samples out of which 54 had

high-resolution proteomic data, 65 had high-quality RNA-seq

data, and 32 had both (Figure 1B). Using tandem mass tag

(TMT)-10plex chemical labeling, we identified 7,096 proteins in

total, out of which 4,567 were used for downstream analyses

(see STAR methods). To account for stromal contamination of

the transcriptomic samples, we filtered the RNA-seq gene list

according to a bona fide glioma (BFG) gene list generated by

Wang et al. (2017) and performed the downstream analyses
2 Cell Reports 34, 108787, March 2, 2021
with the resulting 11,459 genes (see STAR methods). To mini-

mize sample variation, we took mostly IDH1-wild type (WT),

untreated primary tumors. To initially increase the number of

samples with IDH1 mutation annotation, we classified the sam-

ples using a published RNA-seq-based signature (Baysan

et al., 2012) and found eight samples to be IDH1 mutant, out of

which only one had both RNA and protein data (Figure 1C; Fig-

ure S1A; Table S1).

In order to globally compare the RNA and protein layers and

maximize the statistical power of our analyses, we performed un-

supervised classification independently on the proteomic data

(53 samples) and transcriptomic data (65 samples) using

consensus clustering algorithm (Monti et al., 2003). In addition,

we classified the tumors in our cohort according to established

RNA-based signatures (Wang et al., 2017). Out of 65 analyzed

RNA samples, 19 were defined as the Cla subtype, 16 as MES,

and 17 as PN (hypergeometric p value < 0.05; see STAR

methods). The transcriptomic consensus clustering resulted in

three robust clusters that match the published transcriptional

subtypes (group 1 is Cla, group 2 is PN, and group 3 isMES) (Fig-

ure 2A; Figure S2A). The proteomic classification also resulted in

three groups (Figure 2B; Figure S2B), but with only 25% of the

overlapping samples clustering similarly in both layers. In order

to try and match between the groups identified in each layer,

we looked for differentially expressed genes or proteins in

each classification (ANOVA test, false discovery rate [FDR] <

0.01) and examined their enriched functionalities. Hierarchical

clustering showed that the differentially expressed features in

each layer divide into three clusters. The functional enrichment

in the RNA clustersmostly recapitulated the known gene expres-

sion signatures for each of the subtypes, e.g., immune signaling

in the MES subgroup and Notch signaling in the Cla subgroup

(Brennan et al., 2013) (Fisher’s exact test, FDR< 0.05; Figure 2C).

In each classification, two out of three subgroups were enriched

for biological processes that are expression-level specific, such

as nuclear factor kB (NF-kB) signaling and epigenetic regulation

in RNA clusters, or proteasomal regulation and translation in pro-

tein clusters (Figures 2C and 2D). Intriguingly, one cluster was

functionally similar in RNA and protein, displaying a neuronal

profile and enriched for processes such as synaptic transmission

and neuron generation. In addition, protein networks associated

with these enrichments include overlapping and inter-connected

members, such as guanine nucleotide-binding proteins (GNGs)

and the neuronal calcium sensor neurocalcin delta (NCALD) (Fig-

ure 2E). These proteins were highly expressed in protein group 3,

and RNA group 2, which share only two samples. These results

show that neuronal features appear in both layers, but are

apparent in a different set of tumors. This discrepancy may

partially result from internal tumor heterogeneity. Nevertheless,

it highlights proteomics as another layer of tumor heterogeneity

in GBM (see Tables S2A–S2D for lists of differentiating features

and significantly enriched processes).

Given the profound differences in the clustering analyses,

we examined the global RNA-protein agreement of processes,

and specifically, the processes observed in the clustering

analysis. To that end, we combined the two datasets and

calculated the Spearman rank correlation between RNA and

protein expression over 4,514 genes quantified in both layers
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B Figure 1. Generation of proteogenomic

cohort of glioblastoma patients

(A) For the proteogenomic workflow, samples were

collected from resected tumors and were subject to

mass spectrometry analysis and RNA-sequencing

(RNA-seq).

(B) Number of samples in total and per data type. In

each column, different color represents number of

samples that have only the data type in the column

specified.

(C) Heatmap describing samples collected from 87

GBM patients. Clinical parameters are indicated: R,

radiation therapy; RC, radiation and chemotherapy;

RCA, radiation and chemotherapy combined with

Avastin.Missing values in overall survival panel indicate

precisesurvivaldayswerenotavailable.Extent refers to

the extent of surgical resection. KPS stands for Kar-

nofsky performance status.

See also Figure S1.
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of the 32 shared samples (see STAR methods). The median

Spearman correlation was rather modest (r = 0.16 for 67%

positive correlations; Figure 2F), compared with published

proteogenomic studies, and we assume that the lower corre-

lation results from the different tumor blocks used for each

analysis. Nevertheless, the biological processes enriched in

each extreme of the RNA-protein agreement axis (1D annota-

tion enrichment test, Benjamini-Hochberg FDR < 0.05) reca-

pitulate known findings regarding shared and layer-specific
processes, as shown in Figure S2C (Clark

et al., 2019; Gillette et al., 2020; Mertins

et al., 2016; Zhang et al., 2014, 2016).

For example, ribosome and translation

processes are enriched within the nega-

tively correlating genes, which may

explain the identification of these pro-

cesses only in the proteomic classifica-

tion (Figure 2D); processes such as pro-

teasome and extracellular matrix appear

to be enriched within positively corre-

lating genes (Figures 2G and 2H; Table

S2E).

Proteogenomic association with
GBM clinical parameters
Our main aim was to associate between

RNA and protein profiles and the patient

clinical parameters: survival, prior treat-

ment, recurrence, sex, and age. We hy-

pothesized these could be identified

despite the RNA-protein discrepancies in

tumor classification. We excluded IDH1-

mut tumors from these analyses, given their

different overall survival and clinical fea-

tures (Yan et al., 2009).

To find functionally related genes and

their clinical associations, we performed

weighted gene correlation network analysis

(WGCNA) independently for transcriptom-

ics and for proteomics of IDH1-WT tumors
(n = 52 proteomics, n = 56 transcriptomics). This unsupervised

analysis enables a biologically informed dimensionality reduc-

tion, by searching for groups of co-expressed genes/proteins

termed modules. Each module is then represented by a module

eigengene, which is a linear combination of itsmembers’ expres-

sion. We found 41 and 34 modules in proteomics and transcrip-

tomics data, respectively. We then calculated the correlation be-

tween eachmodule’s eigengene and clinical traits of interest and

retained only significant (p < 0.05) correlations. In both
Cell Reports 34, 108787, March 2, 2021 3
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expression layers, we identified modules that correlate to age,

sex, and treatment. Processes such as chromatin regulation

and cell differentiation were enriched within modules positively

correlating with age. Other processes associated with age

included NF-kB signaling and were limited to the RNA level.

Interestingly, younger age correlated with histone methylation,

both known as markers for good prognosis (Batchelor et al.,

2004; Zheng et al., 2011). Resemblance between transcriptom-

ics and proteomics was also observed in sex-correlating mod-

ules, specifically within female patients wherein commonly upre-

gulated processes included cell-cycle regulation, proteasome,

and innate immune response. The major difference was

observed in survival-correlating modules: while six proteomic

modules correlated with survival (three of them positively and

three of them negatively), none of the RNA modules did (Fig-

ure 3A). It is worth noting that while some of these survival-asso-

ciated modules correlated only with survival, the long survival

modules also presented a significant and opposite correlation

to treatment. However, exclusion of treated samples resulted

in similar long-survival-correlating modules (Figure S3A; Tables

S3A–S3C) and yielded a single RNA survival module that con-

tains 32 genes and was not enriched for any biological pro-

cesses. Interestingly, when including IDH1-mut samples in the

RNAWGCNA, we do find RNAmodules associated with survival.

However, each of these modules is also significantly correlated

to IDH1 status, indicating that transcriptomic expression profiles

do not inform survival beyond IDH1 status (Figure S3B).

To further examine the association with survival on the individ-

ual protein level, rather thanmodule level, we performed Kaplan-

Meier analysis of all proteins belonging to each of the six survival

modules (from Figure 3A). Out of 510 proteins, we found 11 to

have a significant association with survival (log-rank test

adjusted p value < 0.05; Figures 3B and 3C). Interestingly, one

of the long survival modules is represented by the macro-

phage-secreted protein CD5L (see Discussion). Other than this

protein, this module consists of multiple complement system

components, implying a potential anti-tumorigenic role (for full

details regarding module membership and functional enrich-

ments, see Tables S3A–S3D). Next, we validated the survival

analysis using two external RNA-seq datasets (TCGA and Chi-

nese Glioma Genome Atlas [CGGA]). Consistent with our find-

ings, none of the 11 genes was found significant in the RNA level

(Figure S3C). It is noteworthy that the expression trend—whether

expression level of a certain gene corresponds to better or

poorer survival—is similar when comparing our proteomics

data with TCGA (64%, 7 out of 11 common genes) and less so

when comparing with CGGA (40%, 4 out of 10 common genes).
Figure 2. Comparing unsupervised clustering of each expression laye

(A and B) Consensus clustering heatmap showing three clusters found in either tra

score. Cluster annotations are indicated as well as IDH1 mutation status in the R

(C and D) Enriched biological processes and pathways in each cluster in each c

(E) Protein-protein interaction network of the ‘‘synaptic transmission’’ category in

evidence. Color represents layer: protein, purple; RNA, turquoise; both, dark blu

(F) Global RNA-protein correlation based on 32 overlapping samples.

(G andH) Enriched biological processes within positively (G) or negatively (H) corre

by respective color bars.

See also Figure S2.
While ethnicity-specific genomic features are well established in

lung adenocarcinoma (Chen et al., 2020; Gillette et al., 2020), in

GBM there is some evidence regarding differences in molecular

classification (Yan et al., 2012); however, there is no difference in

overall survival between western and Chinese populations (Ma

et al., 2009). Further validation should be performed on other

large-scale proteomics datasets of GBM, once these become

available.

Integrating scRNA data to link RNA expression patterns
with survival
Wehypothesized that the lack of significant association between

RNA expression levels and survival could be due to high internal

tumor heterogeneity and might be unmasked by examining spe-

cific tumor subpopulations. Neftel et al. (2019) generated

scRNA-seq data and used it to identify four different tumor sub-

populations in IDH1-WT GBMs: MES, astrocytic (AC), neural

progenitor cell-like (NPC), and oligodendrocytic precursor cell-

like (OPC). For each subpopulation, they established a gene

signature that enables calculation of the population dominance

in bulk tumor. Using these signatures, we defined the dominant

subpopulation per tumor both in our RNA-seq data and in TCGA

GBM RNA-seq data, as described previously (Neftel et al., 2019)

(see STARmethods). In bulk TCGA tumors, the single-cell-based

subtypes (defined by themost dominant subpopulation in the tu-

mor) were more evenly distributed (Figure 3D); therefore, we

used this dataset to examine whether different subpopulations

tend to be highly correlated to survival. We calculated the Pear-

son correlation between survival and the expression of each

signature gene. We then ranked all the genes according to this

correlation and examined the enrichment of each of the four sig-

natures in the positively (high rank) or negatively (low rank) corre-

lating genes (1D annotation enrichment test, Benjamini-Hoch-

berg FDR < 0.05). Analysis of the TCGA bulk RNA data

showed significant association of NPC andMES signature genes

with shorter survival and of OPC and AC signature genes with

longer survival (Figure 3E). Only the AC signature was also signif-

icantly enriched in our RNA-seq data. Other signatures showed

no clear trend, presumably due to their under-representation in

the current cohort. Thus, combining bulk tumor correlation anal-

ysis with single-cell data provided a potential association be-

tween tumor subpopulations and survival.

Integrating RNA and protein to identify layer-specific
contribution to survival
The global correlation analysis and the layer-specific classifica-

tion show that the differences between RNA and protein
r

nscriptomic (A) or proteomic (B) data. Blue color represents sample consensus

NA heatmap.

lassification (Fisher’s exact test, FDR < 0.05).

protein and RNA. Edge width represents level of confidence for the interaction

e.

lating genes. Circle size stands for GO category size, and p values are indicated

Cell Reports 34, 108787, March 2, 2021 5
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potentially represent yet another layer of inter-tumor heteroge-

neity in GBM, in the gene expression level. Given the contribution

of correlation-based analysis to connect single-cell-based sig-

natures and survival, we wanted to extend the analysis to identify

other groups of genes and proteins that show a specific survival

pattern in the IDH1-WT tumors. To evaluate the contribution of

each layer to survival, we filtered the data to retain only genes

for which expression was quantified in both layers (n = 3,407;

see STARmethods) and then calculated the correlation between

patient survival and the gene’s protein or RNA expression across

all patients. Clustering of the significantly correlating genes/pro-

teins with survival (n = 1,240; permutation-based adjusted p

value < 0.1; Figure 4A) separated them to seven clusters, and

each of those was tested for its enrichment for protein or RNA

correlations with short or long survival (Fisher’s exact test, Ben-

jamini-Hochberg FDR < 0.05; Figure 4B). While some genes

correlated highly and negatively with survival in both RNA and

protein (common-short), some correlated highly and positively

in both layers (common-long). Interestingly, the latter is the

smallest cluster, indicating that RNA and protein correlate simi-

larly to survival mostly when survival is shorter and suggesting

that longer survival is defined by layer-specific processes.

Furthermore, several clusters contain genes correlating to sur-

vival only in one layer, and one cluster was enriched for genes

whose survival-related behavior was altogether opposite in the

two layers. A parallel analysis that includes IDH1-mut samples

produced similar results except for several common correlations

and processes (Figure S3D).

Gene Ontology (GO) enrichment analysis showed that en-

riched processes in the common-short cluster include lysosomal

activity and amino and nucleotide sugar metabolism. We did not

find enriched processes in the common-long cluster, presum-

ably due to its small size.

Long-survival processes in the RNA level include layer forma-

tion in cerebral cortex and neuron projection, while the protein-

long cluster, in addition to gene expression and chromatin

regulation processes, is enriched for oxidative phosphorylation

and the electron transport chain. Glycolytic metabolism is one

of the known biological aspects of GBM tumor aggressiveness

(Murat et al., 2009; Wolf et al., 2011). Thus, the processes char-

acterizing the protein-long cluster could be interpreted as a

metabolic mirror image of the short-term survival glycolytic

metabolism, suggesting an attenuated Warburg effect in less

aggressive GBM tumors.

Inflammatory processes are another aspect of GBM aggres-

siveness (Reynés et al., 2011; Yeung et al., 2013), and indeed
Figure 3. RNA and protein associations to clinical parameters

(A) Heatmap describing modules resulting from independent WGCNA analyse

chemotherapy. Significant Pearson correlations (p < 0.05) to clinical parameters

0 (gray), which includes features below the module adjacency cutoff, is not show

(B and C) Kaplan-Meier plots of selected proteins from short (B) and long (C) surv

0.05).

(D) Table describing the distribution of singe-cell RNA-seq-based dominant subp

MES, mesenchymal; NPC, neural progenitor cell-like; OPC, oligodendrocytic pre

(E) Barcode plot showing the rank of each single-cell subpopulation signature in

dataset. High rank indicates positive correlation to survival, while low rank indicate

non-significant.

See also Figure S3.
we found them to be associated with short-term survival: the

RNA-short cluster is enriched for T cell immunity, whereas en-

riched antigen processing and presentation are observed in

the protein-short cluster. To further examine the relationship be-

tween survival and immunity, we used the ESTIMATE algorithm

(Yoshihara et al., 2013) to calculate immune and stromal infiltra-

tion and infer tumor purity. Using linear modeling, we found a sig-

nificant negative association only between immune score and

survival (p value = 0.026), indicating that immune infiltration is

higher in short-term survivors (Table S1).

The protein-short cluster is also enriched for cell-cycle

signaling and regulation of stem cell maintenance, known to be

a marker for poorer prognosis in GBM. In addition, it reveals a

metabolic profile that goes beyond glycolysis and includes

b-oxidation (see Table S3E for all significantly enriched pro-

cesses). Despite relying primarily on glucose metabolism, fatty

acid oxidation also has a potential role in glioma cell growth

(Lin et al., 2017; see Discussion).

Interestingly, we found a cluster of 65 genes that correlate

oppositely to survival, out of which 33 have an opposite and

significant correlation in both RNA and protein (Figure 4C).

Among these genes, we found the NF-kB2-RELA transcription

factor complex, calcium/calmodulin-dependent protein kinase

type 1 (CAMK1), and TP35BP2. RELA (RELA Proto-oncogene,

NF-kB subunit) and TP53BP2 correlate with short survival in

the RNA level and long survival in the protein level. NF-kB

signaling is tumor promoting in GBM, and its opposite trend

in the protein level is yet to be evaluated. TP53BP2 interaction

with RELA was shown to inhibit cell death and thus potentially

contributes to tumorigenesis (Yang et al., 1999). However,

TP53BP2 is a known tumor suppressor (Takahashi et al.,

2004), and its upregulation might contribute to better outcome

in GBM. CAMK1 shows an opposite pattern: it is correlated

with short survival in the protein level and long in the RNA

level. Calcium signaling in the brain is associated with neuro-

genesis in normal brain and with neuro-progenitor/stem-like

cells in GBM (Leclerc et al., 2016). In order to validate the

opposite patterns of these three markers, we quantified

mRNA expression using quantitative real-time PCR and pro-

tein expression using IHC, in representative short-term (less

than 6 months) and long-term (more than 2 years) samples

from our cohort. While only CAMK1 and RELA were statisti-

cally significant in RNA and protein, respectively, all three

markers showed the expected trend in both expression layers

(Figure 4D; Figure S4). Altogether, the integrated proteoge-

nomic analyses show the value of each of the expression
s in protein (top) and RNA (bottom). Treated_RC, treated with radiation and

are indicated in red-to-blue color, as indicated in the color bar below. Module

n.

ival modules show significant association with survival (log rank corrected p <

opulations in TCGA bulk RNA and in the current RNA datasets. AC, astrocytic;

cursor cell-like.

a scale of correlation to survival in either TCGA (left) or current (right) RNA-seq

s negative correlation. Numbers indicate Fisher enrichment test q-values. N.S.,

Cell Reports 34, 108787, March 2, 2021 7
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Figure 4. Integrated analysis of survival

(A) Hierarchical clustering of correlation coefficients of 1,240 genes significantly correlating to survival in either RNA or protein (adjusted p value < 0.1) identifies

seven clusters.

(B) Each of the seven identified clusters is enriched (BH-FDR < 0.05) for layer-specific significant correlations. Common and opposite clusters are enriched for

genes significantly correlating to survival in both RNA and protein. Shape type indicates expression layer, and shape size corresponds to enrichment factor.

(legend continued on next page)
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layers and provide the basis for future establishment of prog-

nostic biomarkers of GBM.

DISCUSSION

In this work, we performed a proteogenomic analysis of GBM,

focusing on primary IDH1-WT tumors. We compared proteomic

findings to established transcriptomic features and examined

each layer’s association with patient survival. We found that

proteomic profiles generate tumor subtypes different from es-

tablished transcriptomic subtypes and are more robustly associ-

ated with survival as shown by the WGCNA analysis. Taking

internal tumor heterogeneity into account by using published

scRNA-seq data enabled us to link survival with specific tumor

subpopulations.

The current cohort posed two initial challenges: samples for

proteomics and transcriptomics were not taken from the exact

same region, and not all samples had data in both omics. To

address the first challenge, we performed most of the analyses

in a layer-independent examination and then compared the re-

sults. To overcome the partial overlap between RNA and protein

samples, we used the 32 samples for which we had data in both

layers, compared protein to RNA expression, and verified that

enriched processes within either positively or negatively corre-

lating genes recapitulate previous proteogenomics findings.

The discrepancy between RNA and protein was largest in the

tumor classification analyses. While some of these differences

may be apparent due to the internal tumor heterogeneity, previ-

ous classifications of other tumor types (e.g., breast cancer

[Mertins et al., 2016; Yanovich et al., 2018]) did not show such

major differences, despite analyzing distinct regions/tumors. In

contrast, in GBM we found minor concordance between the

functionalities of the RNA and protein clusters. Using a different

unsupervised approach, in which genes are clustered rather than

samples, we did find functional similarities between RNA/protein

expression and clinical traits such as sex and age. However, in

the case of overall survival, we found proteomic expression pro-

files that correlate with survival in IDH1-WT tumors, but could not

find such profiles in the RNA data. This finding recapitulates

other studies that utilized RNA-seq on IDH1-WT tumors and

also did not observe a clear association with prognosis (Wang

et al., 2017).

Internal tumor heterogeneity is an inherent limitation of omic

data generated from bulk tissues. Therefore, we hypothesized

that the link between RNA expression and survival might be un-

masked by incorporating publically available scRNA-seq data.

Applying a correlation-based approach enabled us to signifi-

cantly link two single-cell-based subpopulation signatures with

short survival and two other signatures with long survival. In or-

der to substantiate the connection between RNA levels, internal

tumor heterogeneity, and patient outcome, it would be neces-

sary to check whether the ratio between long and short subpop-
(C) Thirty-nine genes of the ‘‘opposite’’ cluster that have opposite and significan

(D) Quantitative real-time PCR and IHC validation of three selected markers show

values normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are s

is shown in turquoise. Vertical lines represent standard error values.

See also Figures S3 and S4.
ulations within a tumor reflects patient outcome, once single-cell

techniques enable the collection of larger patient cohorts.

Furthermore, single-cell proteomic analyses are expected to

unravel whether the bulk inter-layer differences are also

apparent in the individual cell populations.

We used a similar integrative approach to combine protein

expression, RNA expression, and survival correlation, which

led us to identify survival patterns in both layers, and define

whether they are shared between expression layers or layer spe-

cific. Since our proteomic cohort included only one IDH1-mut

sample, follow-up studies could refine this analysis by

comparing the IDH1-WT and mutant proteomic profiles of

GBM, as recent evidence suggests a prominent proteomic dif-

ference between these groups in lower grade gliomas (Djuric

et al., 2019).

Our analyses highlight three main mechanisms to be associ-

ated with survival: immune processes, metabolic processes,

and developmental processes. We found short survival to be

associated with inflammation and glycolytic metabolism, both

with established roles in tumor growth and aggressiveness in

GBM (Reynés et al., 2011; Waters et al., 2019; Yeung et al.,

2013). Interestingly, while NF-kB signaling and T cell immunity

negatively correlate with survival and reflect a pro-tumorigenic

inflammatory response, supported by a higher immune infiltra-

tion score, the WGCNA results also show a positive association

between immunity and survival in the form of immunoglobulins

and complement system components, suggesting a potential

anti-tumorigenic immune response. Furthermore, the proteomic

layer provides an extended metabolic context for patient sur-

vival: linking increased fatty acid oxidation with short survival

time and oxidative phosphorylation (OXPHOS) with longer sur-

vival time. These findings are supported by the identification of

the role of fatty acid oxidation in tumor growth and oxidative

stress mitigation (Duman et al., 2019; Pike et al., 2011) and the

role of OXPHOS in tumor suppression and mitochondria-pro-

moted apoptosis in GBM (Michelakis et al., 2010). Additionally,

our integrative analysis revealed that stemness-development

axis is also evident in the protein level. Traditionally, cancer

stem cell populations in gliomas have been shown to possess

higher tumorigenic capacity and as such were considered a

promising therapeutic target (Berger et al., 2004; Galli et al.,

2004; Suvà et al., 2014). However, while the association between

stemness and aggressiveness was observed in lower grade gli-

omas (Tirosh et al., 2016; Venteicher et al., 2017), it is not

straightforward in GBM tumors, in which multiple cells invariably

express stemness markers (Patel et al., 2014). In addition, the

high plasticity of GBM cells enables differentiated tumor cells

to undergo de-differentiation, regulated by the tumor microenvi-

ronment, epigenomics, and other factors (Dirkse et al., 2019). For

example, it was recently shown that differentiation-inducing

treatment in GBM cell lines is mediated by elevated mitochon-

drial metabolism and specifically OXPHOS (Xing et al., 2017).
t correlations to survival.

ing opposite survival patterns in RNA and protein. mRNA relative expression

hown in purple. Protein expression represented by percentage of stained cells
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Our findings reinforce the functional connection between stem-

ness, metabolism, and overall survival in GBM. This suggests

that further investigation of the proteomic profiles associated

with stemness in shorter and longer survival might benefit stem-

ness-targeted clinical efforts.

In conclusion, we presented here a global, RNA-seq, and MS-

based characterization of gene and protein expression in clinical

samples of GBM. The identified proteomic and transcriptomic

patterns shed light on the intriguing molecular heterogeneity of

GBM tumors by revealing functionalities related to patient sur-

vival and disentangling the contribution of each expression layer.

In addition, this dataset can serve as a resource to further study

the proteogenomic landscape of GBM and to evaluate specific

genes of interest.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CAMK1 antibody Atlas Antibodies Cat#HPA051409; RRID:AB_2681473

TP53BP2 antibody Sigma-Aldrich Cat#HPA021603; RRID:AB_1844384

RELA antibody Cell Signaling Technology Cat#8242; RRID:AB_10859369

Biological samples

Formalin-fixed paraffin-embedded (FFPE)

glioblastoma samples

Tel Aviv Sourasky Medical Center N/A

Fresh frozen glioblastoma samples Tel Aviv Sourasky Medical Center N/A

Chemicals, peptides, and recombinant proteins

PerFecTa SYBR Green FastMix ROX Quanta BioSciences Cat#95073

Fluorescamine Sigma-Aldrich Cat#F9015

Micromount solution Leica Biosystems Cat#3801730

Bond Dewax Solution Leica Biosystems Cat#LE-AR9222

BondTM Epitope Retrieval 1 Leica Biosystems Cat#LE-AR9961

BondTM Wash Solution 10X Leica Biosystems Cat#LE-AR9590

10plex Tandem mass tags (TMT) Thermo Scientific Cat#90110

Critical commercial assays

EZ RNAII isolation kit Biological Industries Cat#20-410-100

DNase RNase-free water Biological Industries Cat#01-869-1A

Sequencing Grade Modified Trypsin Promega Cat#V5113

LysC Trypsin mix Promega Cat#V5071

Pierce High pH Reversed-Phase Peptide

Fractionation Kit

Thermo Scientific Cat# 84868

Bond polymer refine detection kit Leica Biosystems Cat#DS9800

FluoroProfile� Protein Quantification Kit Sigma-Aldrich Cat# FP0010

Deposited Data

Proteomics data This paper PRIDE: PXD018024

Transcriptomics data This paper GEO: GSE149009

Oligonucleotides

CAMKI F: GCAGCCGCAGGAGCC Integrated DNA Technologies https://www.idtdna.com/

CAMKI R: AGGATCACCTCCGAGAAGGC Integrated DNA Technologies https://www.idtdna.com/

TP53BP2 F: GAAGTGTGGTGTGGCTCTG Integrated DNA Technologies https://www.idtdna.com/

TP53BP2 R:

AGATCTTGGTCCACTCACAATGTC

Integrated DNA Technologies https://www.idtdna.com/

RELA F: GGAATTCCAGTACCTGCCAGA Integrated DNA Technologies https://www.idtdna.com/

RELA R: GTCGGTGGGTCCGCTGAA Integrated DNA Technologies https://www.idtdna.com/

Software and algorithms

MaxQuant Cox and Mann, 2008 https://maxquant.org/; RRID:SCR_014485

Andromeda search engine Cox et al., 2011 N/A

Perseus (Tyanova et al., 2016c) https://maxquant.org/perseus/;

RRID:SCR_015753

R The R Foundation https://www.r-project.org/

Python Python Software Foundation https://www.python.org

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/?

page=trimmomatic; RRID:SCR_011848

Salmon (Patro et al., 2017) https://combine-lab.github.io/salmon/

Other

Empore Octadecyl C18 47mm Extraction

disks

Sigma-Aldrich Cat#66883-U

50 cm EASY-spray PepMap column Thermo Scientific Cat#ES803
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tamar

Geiger (geiger@tauex.tau.ac.il).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The accession number for the mass spectrometry proteomics dataset reported in this paper is PRIDE: PXD018024 (Perez-Riverol

et al., 2019). The RNA-seq data have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are accessible

through GEO Series accession number GEO: GSE149009.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Frozen tissue blocks and formalin-fixed paraffin-embedded (FFPE) tissues were obtained from the Neurosurgery and Pathology de-

partments of Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. We acquired tumor samples from 87 patients, all taken from tumor

resection surgery; 69 were pathologically defined as primary glioblastoma (GBM), one sample was secondary GBM and for 17 pa-

tients recurrence information was not available. Only eight patients were given treatment (radiotherapy and chemotherapy) prior to

surgery. For two patients (L18 and L19), we had samples from two different foci. The cohort included tumors from 29 females, 49

males and 9 without sex information, with age range of 19 to 85 (median 62). Additionally, in order to perform a molecular analysis

of patient survival, samples were specifically selected to have varying survival rates, ranging from less than three months to over 10

years (median�5 months). Clinical information regarding tumor location, extent of tumor resection and Karnofsky Performance Sta-

tus (KPS) are also provided. Regression analysis found no significant association between these traits and survival except for the

extent of tumor resection (p value = 0.042, Figure S1B). All samples were obtained upon ethical approval from the IRB committee

of the Tel Aviv Sourasky Medical Center. Clinical information of each patient is included in Table S1.

METHOD DETAILS

RNA extraction and sequencing
RNA was extracted from fresh frozen GBM tissues of human patients using EZ RNAII isolation kit (Biological Industries, Bet Haemek,

Israel) according to manufacturer’s instructions. Samples were homogenized in Denaturing Solution (0.5ml/50-100mg tissue) using

GentleMACS homogenizer (Miltenyi Biotech, USA) program RNA-02. Homogenates were stored for 5 minutes at room temperature,

then 0.4ml Water-saturated phenol was added followed by 0.09ml 1-Bromo-3-chloropropane (BCP) and vigorous shaking for 15 s.

The resulting mixture was stored at room temperature for 10 minutes and then centrifuged at 12,000 g for 15 minutes at 4�C. The
aqueous colorless (upper) phase was transferred to a fresh tube followed by addition of 0.5ml isopropanol. Mixture was stored

for 30minutes at�20�Cand then centrifuged at 12,000 g for 8minutes at 4�C. Supernatant was removed andRNApellet waswashed

(by vortexing) with 1ml 75% ethanol, then centrifuged at 7,500 g for 5 minutes at 4�C. Ethanol was removed, RNA pellet was air-dried

for 20-30 minutes and then dissolved in 100 mL of DNase RNase-free water (Biological Industries, Bet Haemek, Israel) by incubating

for 10-15 minutes at 55�C. RNA samples were kept at�80�C until sequencing. RNA Integrity Number (RIN) was determined for each

sample using the 2200 TapeStation system (Agilent, CA, USA). RNA libraries were prepared according to Illumina protocols. Paired-

end RNA sequencing data (read length 100 base pairs, designated 20million reads per sample) was generated on the Illumina HiSeq

2500 at Otogenetics Corporation, Atlanta, GA USA.
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Protein extraction
54 FFPE blocks were macro-dissected from tissue slices by overlaying H&E staining, in order to enrich for cellular areas and exclude

stromal components. Dissected samples were lysed in 50% 2-2-2 trifluoroethanol (TFE) in 25mM ammonium bi-carbonate (ABC),

incubated with 5mM Dithiothreitol (DTT) and alkylated with 15mM Iodoacetamide (IAA). Prior to protein digestion, samples were

diluted 1:10 with 5mM ABC, and then digested overnight with LysC/Trp mix and Trypsin in an enzyme to protein ratio of 1:100

and 1:50, respectively. Prior to labeling, clean-up of digested peptides was performed using C18 Stage-Tips. We proceeded to tan-

dem-mass-tags (TMT) 10plex labeling according to the manufacturer’s instructions (Pierce). The 54 samples were divided into six

sets of 10plex-TMT, while the tenth sample in each set consisted of a tumor-mix to be used as a quantification standard between

different sets. Following labeling, samples were combined and vacuum-concentrated, and then resuspended in 0.1% trifluoroacetic

acid (TFA). Resuspended samples were loaded onto high-pH reverse phase columns (Thermo Fisher Scientific) for sample fraction-

ation. Each 10plex-TMT set was fractionated into eight fractions according to the manufacturer’s instructions. Resulting fractions

were then vacuum-concentrated and resuspended in MS loading buffer (2% acetonitrile, 0.1% formic acid). Protein concentrations

were determined using FluroroProfile Protocol and peptide concentrations prior to TMT labeling were determined using Fluoresc-

amine Protocol, both on NanoDrop 3300 Fluorospectrometer (Thermo Fisher Scientific).

Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis
Peptides were separated in the Easy-nLC 1000 nano-HPLC system (Thermo Fisher Scientific) using reverse phase chromatography

on a C18 Easy-Spray column; and loaded to the Q-Exactive HF mass spectrometer (Thermo Fisher Scientific). Each sample ran for a

128-min gradient of water and 80% acetonitrile, with an MS resolution of 120,000 (scan range 350-1400 m/z, ion target value of 3e6

and maximum injection time of 100 ms) and MS/MS resolution of 60,000 (scan range 200-2000 m/z, ion target value of 1e5 and

maximum injection time of 60ms). In everyMS scan, the top 15most abundant peakswere selected for higher-energy collision disso-

ciation (HCD) fragmentation.

Gene expression analysis (qPCR)
RNA from 10 GBM frozen tissues was isolated with EZ-RNA II total RNA isolation kit (Biological Industries Ltd., Israel), according to

the manufacturers protocol. Samples were lysed with 0.5 mL Denaturing Solution/10 cm2 culture plate. Water saturated phenol was

then added, and the samples were centrifuged. Isopropanol was added to precipitate the RNA and the centrifuged RNA pellet was

washed with 75% ethanol, centrifuged, and re-suspended with ultra-pure double distilled water. RNA concentration was evaluated

using a NanoDrop� ND-1000 Spectrophotometer according to the manufacturer’s V3.5 User’s Manual (Nano-Drop Technologies,

Wilmington, DE). qScriptTM cDNA synthesis kit for RT-PCR was used to synthesize cDNA, according to the manufacturer’s guide-

lines. Briefly, 1 mg of total RNA sample was mixed with qScript Reverse Transcriptase, dNTPs, and nuclease free water. The reaction

tube was then incubated at 42�C for 30 min and heated at 85�C for 5 min to stop the reaction.

Expression level of several target genes was assessed by SYBR green real-time PCR (PerFecTa SYBR Green FastMix ROX

(Quanta BioSciences) according to manufacturer’s protocol, and normalized to the expression of GAPDH housekeeping gene. Dif-

ference between long and short term groups across three replicates for eachmarker was assessed by two-tailed t test (alpha = 0.05).

Immunohistochemistry staining
FFPE embedded tumor samples from 10 patients (5 long and 5 short) were cut into 5 mm thick sections. Staining was performed using

BOND RX autostainer (Leica). Briefly, slides were incubated with anti-human TP53BP2, CAMK1, or RELA primary antibody for 1 h.

Following washes, slides were incubated with rabbit\mouse IgG binding polymer for 8min, washed and incubated with DAB for 7min

followed by incubation with hematoxylin for 16 min. Slides were then washed and treated with micromount solution before being

covered with coverslips.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using the Perseus software (Tyanova et al., 2016c), R and Python. Biological annotations were taken

from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).

Protein Identification and Quantification
MS raw files were analyzed using MaxQuant software version 1.6.2.6 (Cox and Mann, 2008; Tyanova et al., 2016b). Peptide search

was performed using the Andromeda search engine (Cox et al., 2011) against the Uniprot human protein database release April 2018,

with 1% false discovery rate (FDR) at the PSM and protein levels. MS level mass tolerancewas set to 4.5 ppm. Peptides were allowed

to have methionine oxidation and N-terminal acetylation as variable modifications and cysteine carbimdomethyl as a fixed modifi-

cation. Quantification was defined based on MS2 reporter ion intensity with TMT channels correction factors supplied by the

manufacturer.
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RNA-sequencing data acquisition and analysis
Resulting reads in FASTQ format were trimmed and quality filtered using Trimmomatic (Bolger et al., 2014). We used Salmon quasi-

mapping tool (Patro et al., 2017) for expression quantification against the transcriptome compiled from the Ensembl human hg38

genome assembly. We used the R package DESeq2 (Love et al., 2014) to convert transcripts per million (TPM) quantifications to

gene level, as well as to perform log2 transformation and variance stabilizing transformations (VST) normalization of the counts for

downstream analysis (Tables S4B–C). Three samples were removed from downstream analysis due to low alignment rates. To ac-

count for stromal contamination of the samples, we filtered the RNA-seq gene list according the bona-fide glioma (BFG) gene list

generated by Wang et al. (2017). Briefly, the authors created this list by integrating RNA-seq data from glioma single cells and the

tumor microenvironment (represented by glioma sphere-forming cell cultures and comparing cellular tumor areas to their matching

leading edge). They created the BFG gene list by removing genes whose expression was significantly high in the tumor microenvi-

ronment from the initial list of identified genes. This resulted in 11,529 genes out of which 11,459 were present in our dataset. We

performed all downstream analyses (except for the global protein-RNA correlation) with the resulting 11,459 genes.

Proteomic data pre-processing and statistics
We identified 7,096 proteins in total in 54 patient samples and 6 control channels (5,422 per sample on average, Table S4A). In order

to retain high-quality quantifications, we filtered the data to contain only proteins that were quantified in all six standard channels. This

resulted in 4,567 proteins, for which missing value imputation was performed sample-wise by drawing values from a normal distri-

bution with a width of 1.5 and down shift of 0.5 standard deviations of the specific sample. Unless otherwise specified, downstream

analyses were then performed on calculated protein ratio between each sample and its corresponding standard. As samples of

different survival rates were evenly distributed between TMT sets, we performed linear modeling to eliminate small TMT batch effects

using R limma package (Ritchie et al., 2015) (Figure S1C).

Data filtration per analysis
For the global RNA-protein correlation analysis we used the Initial transcriptomic data of 23,011 genes, and only the 32 samples for

which we had data in both expression layers. In this analysis, matching between proteomic and transcriptomic data based on gene

names resulted in 4,514 genes. For clustering, WGCNA, and integrative correlation analyses we used transcriptomic data from the

filtered, BFG-based-list (n = 11,459), and valid proteomic data as described above (n = 4,567). In the integrative correlation analysis,

matching between proteomic and transcriptomic data based on gene names resulted in 3,407 genes.

Protein-RNA correlation
Out of a total of 84 samples, 32 had both proteomic and transcriptomic data, while 20 had only proteomic data and 32 had only RNA

data. To calculate the protein-RNA correlation we used only the 32 samples for which we had data in both layers. We then matched

between proteomic and transcriptomic data based on gene names and calculated the Spearman rank correlation coefficient be-

tween gene and protein expression for 4,514 genes. To calculate the biological enrichments of either negatively or positively corre-

lating genes we used 1D annotation analysis in which genes are ranked in ascending order according to their correlation, and genes

of each biological category are tested for having significantly high or low ranks, as described (Cox and Mann, 2012).

Weighted gene correlation network analysis (WGCNA) and unsupervised clustering
WGCNA was performed using the WGCNA R package (Langfelder and Horvath, 2008) and WGCNA implementation in Perseus soft-

ware (Rudolph and Cox, 2019). First, an adjacency network of features (genes/proteins) is created where two features are considered

as connected based on their co-expression level. We used a soft-threshold beta power = 16 to create a robust and signed network,

where two features are connected only if they are positively correlated. Network was then clustered using the algorithm default pa-

rameters to createmodules, reducing the data from thousands of features to several dozens of groups of co-expressing features. The

first principal component of each module is considered the module eigenegne, which is then used to calculate Pearson correlation

with clinical traits. Pearson correlations with p value < 0.05 were considered significant.

As the established RNA classification is based on samples withmixed IDH status, we used all samples (n = 65) for the unsupervised

classification of the RNA and the proteomics data. Since only one proteomic sample was identified as IDH-mut we removed it from

this analysis (n = 53). Clustering was performed using consensus clustering algorithm implemented in ConsensusClusterPlus R pack-

age (Monti et al., 2003; Wilkerson and Hayes, 2010), with subsampling of 80% of the samples over 1000 iterations and 10 as

maximum k (number of clusters). Before classification, samples were z-score normalized followed by protein/gene expression z-

score normalization. Clustering results were evaluated visually in the resulting consensus matrix (one matrix per each k) as well as

quantitatively using the cumulative distribution function of the area under the curve for each k (Figures S2A and S2B).

Integrated Pattern analysis
For the integration of proteomic and transcriptomic datasets we matched the two matrices based on gene names, filtered out genes

that were not quantified at all in each one of the two datasets (n = 3407) and merged genes based on gene name (n = 3354). For the

correlation analysis, we only kept IDH-WT samples for which we had survival information (n = 49 in protein, n = 49 in RNA) and calcu-

lated Pearson correlation twice for each gene: between protein expression and survival, and between gene expression and survival.
e4 Cell Reports 34, 108787, March 2, 2021
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We also calculated a permutation based p value for each correlation, by scrambling the expression data within samples and

repeating the procedure 1000 times. For downstream analysis we kept genes with a significant correlation to survival (permutation

based adjusted p value < 0.1) for either RNA or protein. The resulting 1240 genes, represented by their correlation to survival in each

layer, were then hierarchically clustered. Each cluster was then evaluated based on the correlation pattern of its genes. Fisher enrich-

ment test (FDR = 0.05) tested whether each cluster was enriched for significant survival-protein correlations or survival-RNA corre-

lations. Together with the directionality of the correlation, we were able to name each cluster as either ‘‘protein,’’ ‘‘RNA’’ or ‘‘both’’;

and as associated with either long-term or short-term survival.

Validation using TCGA and Chinese Glioma datasets
We analyzed published RNA-seq data from two sources to validate the Kaplan-Meier and single cell signature analysis. TCGA RNA-

seq data was downloaded from cBioportal for Cancer Genomics (https://www.cbioportal.org/). RNA-seq data of the Chinese cohort

was downloaded from the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn). In both datasets we filtered the samples

to contain only IDH-WT GBM samples, which resulted in 141 samples in TCGA and 109 samples in the Chinese cohort.

Integration of single cell signatures
Single cell RNA signatures were downloaded from Neftel et al. (2019). We determined the dominant single cell-based subpopulation

as described (Neftel et al., 2019). Briefly, we calculated the average expression of each subpopulation’s signature genes. We

compared it to background expression, created by randomly drawing 100 genes from the gene’s expression bin, for each gene in

the signature. This resulted in four scores for each sample, one for each subpopulation. The subpopulation that received the highest

score was considered asmost dominant in that sample. Before this calculation, the genes in each signature were filtered to adjust for

bulk tumor analysis, as described (Neftel et al., 2019). To calculate whether signature gene sets tend to be positively or negatively

associatedwith survival, we calculated Pearson correlation between survival and each gene in the dataset, ranked them in ascending

order and performed 1D enrichment test as described above (FDR = 0.05). The same approach was applied for both TCGA and cur-

rent data.

Survival Kaplan-Meier analysis and log rank test
Kaplan-Meier analysis and log rank test were performed using R’s survival (https://cran.r-project.org/web/packages/survival/index.

html) and survminer (https://cran.r-project.org/web/packages/survminer/index.html) packages. Log rank test p value < 0.05 was

considered significant.

Immunohistochemistry quantification
Obtained slides were scanned using the Leica Aperio VERSA Digital Pathology Scanner platform (Aperio Technologies Inc.). Quan-

tification of the staining was performed using the Aperio eSlide Manager software via the Aperio Cytoplasmic Algorithm (CAMK1,

REL-A, and TP53BP2). Areas enriched by cancer cells were defined by a pathologist, subsequently manually annotated and analyzed

by optimized cytoplasm algorithm (Leica Biosystems). Percentage of positively stained cells were used for downstream statistical

analysis (t test with alpha = 0.05).
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